Abstract
Recognizing text in images has received attention recently. Traditional systems during this space have relied on elaborating models incorporating rigorously hand-designed options or giant amounts of previous information. This paper proposed by taking a different route and combines the representational power of large, multilayer neural networks together with recent developments in unsupervised feature learning, which allows us to use a standard framework to coach highly accurate character recognizer and text detector modules. The recognition pipeline of scanning, segmenting, and recognition is examined and delineated completely
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.