Abstract
Text line extraction is an essential preprocessing step in many handwritten document image analysis tasks. It includes detecting text lines in a document image and segmenting the regions of each detected line. Deep learning-based methods are frequently used for text line detection. However, only a limited number of methods tackle the problems of detection and segmentation together. This paper proposes a holistic method that applies Mask R-CNN for text line extraction. A Mask R-CNN model is trained to extract text lines fractions from document patches, which are further merged to form the text lines of an entire page. The presented method was evaluated on the two well-known datasets of historical documents, DIVA-HisDB and ICDAR 2015-HTR, and achieved state-of-the-art results. In addition, we introduce a new challenging dataset of Arabic historical manuscripts, VML-AHTE, where numerous diacritics are present. We show that the presented Mask R-CNN-based method can successfully segment text lines, even in such a challenging scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.