Abstract
There are several known feature sets for text-independent speaker-identification systems, most of which depend on spectral information. Among these feature sets as a most successful one, there is the set of the Mel-Frequency Cepstrum Coefficients MFCC. This paper introduces a new feature set, namely, the Histogram of the DCT-Cepstrum Coefficients, inspired by the common use of the MFCC, but simpler and faster in computation. A text-independent speaker-identification system based on the DCT-Cepstrum Histogram and Gaussian Mixture Model GMM is implemented. The new feature was tested using speech files from the ELSDSR database and TIMIT corpus. The new feature set managed to achieve high efficiency rates with speaker identification accuracy of 100% on 23 speakers from the ELSDSR database, and 99% on 630 speakers from the TIMIT corpus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Knowledge-based and Intelligent Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.