Abstract
Previous methods on text image motion deblurring seldom consider the sparse characteristics of the blur kernel. This paper proposes a new text image motion deblurring method by exploiting the sparse properties of both text image itself and kernel. It incorporates the L 0 -norm for regularizing the blur kernel in the deblurring model, besides the L 0 sparse priors for the text image and its gradient. Such a L 0 -norm-based model is efficiently optimized by half-quadratic splitting coupled with the fast conjugate descent method. To further improve the quality of the recovered kernel, a structure-preserving kernel denoising method is also developed to filter out the noisy pixels, yielding a clean kernel curve. Experimental results show the superiority of the proposed method. The source code and results are available at: https://github.com/shenjianbing/text-image-deblur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.