Abstract
LinkedIn is one of the most popular sites out there to advertise oneself to potential employer. This study aims to create a good enough text generation model that it can generate a text as if it were made by someone who posts on LinkedIn. This study will use a Neural Network layer called Long Short Term Memory (LSTM) as the main algorithm and the train data consists of actual posts made by users in LinkedIn. LSTM is an algorithm that is created to reduce vanishing and exploding gradient problem in Neural Network. From the result, final accuracy and loss varies. Increasing learning rate from its default value of 0.001, to 0.01, or even 0.1 creates worse model. Meanwhile, increasing dimensions of LSTM will sometimes increases training time or decreases it while not really increasing model performance. In the end, models chosen at the end are models with around 97% of accuracy. From this study, it can be concluded that it is possible to use LSTM to create a text generation model. However, the result might not be too satisfying. For future work, it is advised to instead use a newer model, such as the Transformer model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.