Abstract
Text document classification is content analysis task of the text document and then giving decision (or giving a prediction) whether this text document belongs to which group among given text document ones. There are many classification techniques such as decision method basing on Naive Bayer, decision tree, k-Nearest neighbor (KNN), neural network, Support Vector Machine (SVM) method. Among those techniques, SVM is considered the popular and powerful one, especially, it is suitable to huge and multidimensional data classification. Text document classification with characteristics of very huge dimensional numbers and selecting features before classifying impact the classification results. Support Vector Machine is a very effective method in this field. This article studies Support Vector Machine and applies it in the problem of text document classification. The study shows that Support Vector Machine method with choosing features by singular value decomposition (SVD) method is better than other methods and decision tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.