Abstract
Over the course of the previous two decades, there has been a rise in the quantity of text documents stored digitally. The ability to organize and categorize those documents in an automated mechanism, is known as text categorization which is used to classify them into a set of predefined categories so they may be preserved and sorted more efficiently. Identifying appropriate structures, architectures, and methods for text classification presents a challenge for researchers. This is due to the significant impact this concept has on content management, contextual search, opinion mining, product review analysis, spam filtering, and text sentiment mining. This study analyzes the generic categorization strategy and examines supervised machine learning approaches and their ability to comprehend complex models and nonlinear data interactions. Among these methods are k-nearest neighbors (KNN), support vector machine (SVM), and ensemble learning algorithms employing various evaluation techniques. Thereafter, an evaluation is conducted on the constraints of every technique and how they can be applied to real-life situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.