Abstract

User feedback in text classification serves multiple purposes, including refining models, enhancing datasets, adapting to user preferences, identifying emerging topics, and evaluating system performance, all of which contribute to the creation of more effective and user-centric classification systems. Many text classification techniques, including data mining, machine learning, and deep learning approaches, have been employed in previous literature, each making significant contributions to the field. This paper aims to contribute by guiding researchers seeking commonly used classification techniques and evaluation metrics in text processing. Additionally, it identifies the classification technique that generates higher accuracy and works as a basis for researchers to synthesize studies within their respective fields. PRISMA methodology is adapted to systematically review 28 current literatures on text classification on user feedback. The results obtained are guided by four research questions; paper distribution year, dataset source and size; evaluation metric and model accuracy. The review has shown that support vector machines (SVM) are frequently employed and consistently achieve high levels of accuracy as high as 97.17% with various datasets used. The future direction of this work could explore models that integrate sentiment analysis and natural language understanding to more accurately capture nuanced user opinions and preferences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.