Abstract

ObjectiveFinding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. DesignThe selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naïve Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. MeasurementsThe machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average recall precision, and a sensitivity/specificity match method. ResultsIn most categories, the data-induced models have better or comparable sensitivity, specificity, and precision than the clinical query filters. The polynomial support vector machine models perform the best among all learning methods in ranking the articles as evaluated by area under the receiver operating curve and 11-point average recall precision. ConclusionThis research shows that, using machine learning methods, it is possible to automatically build models for retrieving high-quality, content-specific articles using inclusion or citation by the ACP Journal Club as a gold standard in a given time period in internal medicine that perform better than the 1994 PubMed clinical query filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.