Abstract

The proliferation of mutual fund strategies is a longstanding puzzle in the asset management literature. To gain new insight into this topic, we introduce a method for categorizing funds based on the strategy descriptions in their prospectuses. The resulting Strategy Peer Groups (SPGs), constructed using unsupervised machine learning, capture novel information about the funds and are more detailed than existing style categories. Where the prior literature finds that more unique funds experience greater flows, we find instead that investors prefer funds whose portfolio weights and characteristics are closer to the SPG averages. Investors also favor funds with high SPG-adjusted returns, while different investor clienteles—represented by retail, institutional, and retirement share classes—differ in their allocations across peer groups. Our results are consistent with a mutual fund industry that caters to distinct investor clienteles with heterogeneous marginal rates of substitution, rather than investors with a general preference for variety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.