Abstract

Interactive recommendation with natural-language feedback can provide richer user feedback and has demonstrated advantages over traditional recommender systems. However, the classical online paradigm involves iteratively collecting experience via interaction with users, which is expensive and risky. We consider an offline interactive recommendation to exploit arbitrary experience collected by multiple unknown policies. A direct application of policy learning with such fixed experience suffers from the distribution shift. To tackle this issue, we develop a behavior-agnostic off-policy correction framework to make offline interactive recommendation possible. Specifically, we leverage the conservative Q-function to perform off-policy evaluation, which enables learning effective policies from fixed datasets without further interactions. Empirical results on the simulator derived from real-world datasets demonstrate the effectiveness of our proposed offline training framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.