Abstract
Visible-infrared person re-identification holds significant implications for intelligent security. Unsupervised methods can reduce the gap of different modalities without labels. Most previous unsupervised methods only train their models with image information, so that the model cannot obtain powerful deep semantic information. In this paper, we leverage CLIP to extract deep text information. We propose a Text-Image Alignment (TIA) module to align the image and text information and effectively bridge the gap between visible and infrared modality. We produce a Local-Global Image Match (LGIM) module to find homogeneous information. Specifically, we employ the Hungarian algorithm and Simulated Annealing (SA) algorithm to attain original information from image features while mitigating the interference of heterogeneous information. Additionally, we design a Changeable Cross-modality Alignment Loss (CCAL) to enable the model to learn modality-specific features during different training stages. Our method performs well and attains powerful robustness by targeted learning. Extensive experiments demonstrate the effectiveness of our approach, our method achieves a rank-1 accuracy that exceeds state-of-the-art approaches by approximately 10% on the RegDB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.