Abstract

Due to the rapid increase in the exchange of text information via internet networks, the security and the reliability of digital content have become a major research issue. The main challenges faced by researchers are authentication, integrity verification, and tampering detection of the digital contents. In this paper, text zero-watermarking and text feature-based approach is proposed to improve the tampering detection accuracy of English text contents. The proposed approach embeds and detects the watermark logically without altering the original English text document. Based on hidden Markov model (HMM), the fourth level order of the word mechanism is used to analyze the contents of the given English text to find the interrelationship between the contexts. The extracted features are used as watermark information and integrated with digital zero-watermarking techniques. To detect eventual tampering, the proposed approach has been implemented and validated with attacked English text. Experiments were performed using four standard datasets of varying lengths under multiple random locations of insertion, reorder, and deletion attacks. The experimental and simulation results prove the tampering detection accuracy of our method against all kinds of tampering attacks. Comparison results show that our proposed approach outperforms all the other baseline approaches in terms of tampering detection accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.