Abstract

In models with large extra dimensions, particle collisions with center-of-mass energy larger than the fundamental gravitational scale can generate nonperturbative gravitational objects. Since cosmic rays have been observed with energies above $10^{8}$ TeV, gravitational effects in the TeV energy range can, in principle, be observed by ultrahigh energy cosmic ray detectors. We consider the interaction of ultrahigh energy neutrinos in the atmosphere and compare extensive air showers from TeV black hole formation and fragmentation with standard model processes. Departures from the standard model predictions arise in the interaction cross sections and in the multiplicity of secondary particles. Large theoretical uncertainties in the black hole cross section weaken attempts to constrain TeV gravity based solely on differences between predicted and observed event rates. The large multiplicity of secondaries in black hole fragmentation enhances the detectability of TeV gravity effects. We simulate TeV black hole air showers using PYTHIA and AIRES, and find that black hole-induced air showers are quite distinct from standard model air showers. However, the limited amount of information registered by realistic detectors together with large air shower fluctuations limit in practice the ability to distinguish TeV gravity events from standard model events in a shower by shower case. We discuss possible strategies to optimize the detectability of black hole events and propose a few unique signatures that may allow future high statistics detectors to separate black hole from standard model events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.