Abstract

Menthol, the main active constituent of peppermint oil, exerts gut spasmolytic effects, although its mechanism of action remains unclear. We investigated the effects of menthol on gastric emptying and spontaneous- or evoked- mechanical activity of whole murine stomach. Gastric emptying was calculated after i.p. administration of menthol (50mg/Kg). Responses induced by menthol on gastric intraluminal pressure and evoked-cholinergic contractions were analyzed in vitro. Menthol decreased the gastric emptying rate. In vitro, menthol (0.3–30mM) produced a concentration-dependent relaxation of whole stomach, that was significantly reduced by tetrodotoxin or ω-conotoxin GVIA. The gastric relaxant responses were not affected by Nω-nitro-l-arginine methyl ester, inhibitor of nitric oxide-synthase, apamin or [Lys1,Pro2,5,Arg3,4,Tyr6] vasoactive intestinal peptide (VIP)7-28, a VIP receptor antagonist, but they were significantly antagonized by atropine or guanethidine, a blocker of adrenergic neurotransmission. The joint application of atropine and guanethidine did not produce any additive effects on menthol effects. Phentolamine, an α-adrenoceptor antagonist, but not propranolol, a β-adrenoceptor antagonist, significantly reduced menthol responses and the contemporary administration of both adrenergic antagonists did not produce additive effects. Menthol (1–100μM) produced a reduction of the electrically-evoked cholinergic contractions, which was prevented by guanethidine. Menthol did not affect the contractions induced by carbachol. In conclusion, menthol in mouse, is able to reduce the rate of gastric emptying and to relax the stomach in vitro. The latter effect appears due, almost in part, to neural mechanisms, with involvement of α-adrenoceptors leading to reduction of tonic ongoing release of acetylcholine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.