Abstract

Isoreticular functionalization is a well-elucidated strategy for pore environment tuning and the basis of gas separation performance in extended frameworks. The extension of this approach to discrete porous molecules such as metal-organic cages (MOCs) is conceptually straightforward but hindered by synthetic complications, especially stability concerns. We report the successful isoreticular functionalization of a zirconium MOC with tetrazole moiety by bottom-up synthesis. The title compound (ZrT-1-tetrazol) shows promising C2 H2 /CO2 and C2 H2 /C2 H4 separation performance, as demonstrated by adsorption isotherms, breakthrough experiments, and density functional theory calculations. The design analogy between MOFs and highly stable MOCs may guide the synthesis of novel porous materials for challenging separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.