Abstract

The search for functionalized covalent organic framework (COF) materials is significant on account of their great promise for frontline applications in various fields. Herein, a novel and convenient tactic is developed to design and fabricate the tetrazole-functionalized COF materials with abundant nitrogen atoms, which can provide active sites, facilitating the incorporation of COFs with metal ions. In particular, a β-ketoenamine-linked COF named COF-TpDb is selected as precursor for postsynthetic modification to introduce the tetrazole moieties to coordinate with metal ions cobalt (Co2+) and palladium (Pd2+), giving two functional metal-coordinated COFs complexes COF-TpDb-TZ-Co and COF-TpDb-TZ-Pd. The resultant COF-TpDb-TZ-Co displays a higher oxygen evolution reaction activity with a lower overpotential of 390 mV at a current density of 10 mA cm−2, which is much enhanced compared with COF-TpDb-TZ. The tactic for the fabrication of tetrazole-functionalized COFs with abundant nitrogen atoms implements rational design for the construction of functional COFs and expands the promising application of metal-coordinated COF materials in electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call