Abstract

Three unusual three-dimensional (3D) tetrazine chromophore-based metal-organic frameworks (MOFs) {(Et4 N)[WS4 Cu3 (CN)2 (4,4'-pytz)0.5 ]}n (1), {[MoS4 Cu4 (CN)2 (4,4'-pytz)2 ]⋅CH2 Cl2 }n (2), and {[WS4 Cu3 (4,4'-pytz)3 ]⋅[N(CN)2 ]}n (3; 4,4'-pytz=3,6-bis(4-pyridyl)tetrazine) have been synthesized and characterized by using FTIR and UV/Vis spectroscopy, elemental analysis, powder X-ray diffraction, gel permeation chromatography, steady-state fluorescence, and thermogravimetric analysis; their identities were confirmed by single-crystal X-ray diffraction studies. MOF 1 possesses the first five-connected M/S/Cu (M=Mo, W) framework with an unusual 3D (4(4) ⋅6(6) ) topology constructed from T-shaped [WS4 Cu3 ](+) clusters as nodes and single CN(-) /4,4'-pytz bridges as linkers. MOF 2 features a novel 3D MOF structure with (4(20) ⋅6(8) ) topology, in which the bridging 4,4'-pytz ligands exhibit unique distorted arch structures. MOF 3 displays the first 3D MOF structure based on flywheel-shaped [WS4 Cu3 ](+) clusters with a non-interpenetrating honeycomb-like framework and a heavily distorted "ACS" topology. Steady-state fluorescence studies of 1-3 reveal significant fluorescence emissions. The nonlinear optical (NLO) properties of 1-3 were investigated by using a Z-scan technique with 5 ns pulses at λ=532 nm. The Z-scan experimental results show that the π-delocalizable tetrazine-based 4,4'-pytz ligands contribute to the strong third-order NLO properties exhibited by 1-3. Time-dependent density functional theory studies afforded insight into the electronic transitions and spectral characterization of these functionalized NLO molecular materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call