Abstract
AbstractA graph is s-transitive if its automorphism group acts transitively on s-arcs but not on (s+1)-arcs in the graph. Let X be a connected tetravalent s-transitive graph of order twice a prime power. In this paper it is shown that s=1,2,3 or 4. Furthermore, if s=2, then X is a normal cover of one of the following graphs: the 4-cube, the complete graph of order 5, the complete bipartite graph K5,5 minus a 1-factor, or K7,7 minus a point-hyperplane incidence graph of the three-dimensional projective geometry PG(2,2); if s=3, then X is a normal cover of the complete bipartite graph of order 4; if s=4, then X is a normal cover of the point-hyperplane incidence graph of the three-dimensional projective geometry PG(2,3). As an application, we classify the tetravalent s-transitive graphs of order 2p2 for prime p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.