Abstract

A series of polyamidoamine (PAMAM) dendrimers with tetrathiafulvalene (TTF) at the periphery (Gn-PAMAM-TTF), generation 0-2, were synthesized. These functionalized dendrimers exist as nanospheres with diameters around 80-100 nm in aqueous phase, which can encapsulate hydrophobic molecules. The terminal TTF groups can go through a reversible redox process upon addition of the oxidizing and reducing agents. Each terminal TTF(+•) group of the oxidized Gn-PAMAM-TTF assembled with cucurbit[7]uril (CB[7]) forming a 1:1 inclusion complex with association constants of (3.14 ± 0.36) × 10(5), (1.29 ± 0.12) × 10(6), and (1.79 ± 0.24) × 10(6) M(-1) for generation 0-2, respectively, even at the aggregate state. The formation of the inclusion complex loosened the structure of the nanospheres and initiated the release of cargo, and the release mechanism was validated by dynamic light scattering (DLS), cryo-transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) experiments. This study provides a potential strategy for the development of drug delivery systems synergistically triggered by redox and supramolecular assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.