Abstract
Realization of the half-metallicity in graphene is of crucial importance in all-carbon organic spintronic nanodevices. Here, using first-principles calculations, we predicted the existence of half-metallicity in porphin-decorated graphene nanoribbons based on the synthesized porphin-decorated graphene [He et al., Nat. Chem. 9, 33–38 (2017)]. The configurations are constructed by coupling porphin molecules to one side of three different graphene nanoribbons: zigzag, sawtooth, and armchair graphene nanoribbons. We found that the porphin-decorated zigzag graphene nanoribbons (ZGNRs) exhibit half-metallicity, where their bandgaps are fixed at ∼0.3 eV for the gapped spin channel regardless of the variation of the ribbon width. Different from ZGNR, porphin-decorated sawtooth graphene nanoribbons exhibit ferromagnetic semiconducting properties, and for the armchair graphene nanoribbons, porphin modification only influences their bandgaps. Our findings open an avenue to the graphene-based electronic and spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.