Abstract

Tetraploid induction by inhibiting mitosis I with heat shock (32, 35, and 38 degrees C), cold shock (1, 4, and 7 degrees C), and nocodazole (0.02 to 1.6 mg/L) was investigated in the hard clam Mercenaria mercenaria. All treatments were applied to fertilized eggs about 5 min before the first cell division at 22 to 23 degrees C, and lasted for 10, 15, and 20 min. Three replicates were produced for each treatment with different parents. The ploidy of resultant larvae and juveniles was determined with flow cytometry. Heat shock of 35 and 38 degrees C was effective in inhibiting mitosis I, producing 54% to 89% tetraploid larvae. Heat shock of 32 degrees C accelerated embryonic development without inhibiting mitosis or producing tetraploids. In all heat-shock groups, the survival to D-stage larvae was lower than in controls, suggesting that heat-shock treatments and tetraploidy were detrimental to larval development. At the juvenile stage, survivors from heat-shock groups contained no tetraploids. Cold shocks suspended the first cell division during the treatment, but produced no tetraploids in the 4 degrees C and 7 degrees C treatment groups. Cold shock of 1 degrees C produced 31% tetraploid larvae in one replicate, with none surviving to juvenile stage. Nocodazole inhibited mitosis I at concentrations of 0.04 mg/L or higher, but did not produce tetraploids. This study indicates that heat shock is most effective in inducing tetraploids through mitosis I inhibition, although none of the induced tetraploids survived to juvenile stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call