Abstract
The oligonucleotide d(G5T5) can in principle form a fully matched duplex with G.T pairing and/or a tetraplex. Non-denaturing gel electrophoresis, circular dichroism and NMR experiments show that the tetraplex is exclusively formed by this oligomer in solution. In the presence of its complementary strand d(A5C5) at low temperature, d(G5T5) forms the tetraplex over the normally expected Watson-Crick duplex. However, when d(G5T5) and d(A5C5) are mixed together in equimolar amounts and heated for several minutes at 85 degrees C, and then allowed to cool, the product was essentially the Watson-Crick duplex. The lack of resolution in the 500 MHz 1H NMR spectra and the presence of extensive spin diffusion do not allow us to derive a quantitative structure for the tetraplex from the NMR data. However, we find good qualitative agreement between the NOESY and MINSY data and a theoretically derived stereochemically sound structure in which the G's and T's are part of a parallel tetraplex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.