Abstract

Resorcinarene tetraphosphinite ligands, P4, react with silver(I) trifluoroacetate or silver(I) triflate, AgX, to give the corresponding [Ag4X4(P4)] complexes. The resorcinarene skeleton in these complexes adopts a boat conformation with the silver(I) phosphinite units on the horizontal, rather than the upright, arene units of the resorcinarene. The [Ag4X4(P4)] complexes react with free P4 ligand to yield the [Ag2X2(P4)] or [AgX(P4)] complexes, which are characterized in solution by NMR spectroscopy to have a conformation opposite to that of the [Ag4X4(P4)] complexes; the silver(I) phosphinite groups are on the upright arene rings of the resorcinarene "boat" instead of the horizontal arene units. There is an easy equilibrium between these complexes. When X = triflate, the [Ag4X4(P4)] complexes disproportionate and add aqua ligands during slow crystallization to give "capsule complexes", which are characterized crystallographically as [Ag10(O3SCF3)10(OH2)6(P4)2], [Ag10(O3SCF3)6(OH2)8(P4)2][O3SCF3]4, or [Ag13(O3SCF3)13(OH2)7(P4)2] depending on the resorcinarene tetraphosphinite ligand P4 used. These unusual capsule complexes are formed by the tail-to-tail self-assembly of pairs of [Ag4(P4)]4+ units linked by additional silver ions that bind to the phenyl substituents of one resorcinarene through {Ag(eta2-C6H5)}+ binding and to the bridging triflate ligands, aqua ligands, or both of the other resorcinarene unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.