Abstract
AbstractFour‐arm star‐shaped poly[2‐(diethylamino)ethyl methacrylate]‐b‐poly[2‐hydroxyethyl methacrylate]s block copolymers using tetraphenylsilane (TPS) as a core with adjustable arm lengths are synthesized through two‐step atom transfer radical polymerizations. For comparison, a linear block copolymer with similar molecular weight is also prepared. The assembled star‐shaped copolymer micelles exhibit sizes of 102–139 nm and critical micelle concentrations of 1.49–3.93 mg L−1. Moreover, the bulky and rigid TPS core is advantageous for propping up the four star‐shaped arms to generate large intersegmental space. As a result, the drug‐loading capacity in the micelles is up to 33.97 wt%, much surpassing the linear counterpart (8.92 wt%) and the previously reported star‐shaped copolymers prepared using pentaerythritol as the core. Furthermore, the micelles show sensitive pH‐responsive drug release when the pH changes from 7.4 to 5.0. The in vitro cytotoxicity to Hela cells indicates that the doxorubicin (DOX)‐loaded micelles have similar anticancer activity to the pristine DOX. The combination of excellent micelle stability, high drug‐loading, sensitive pH response, and good anticancer activity endows the copolymers with promising application in drug control delivery for anticancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.