Abstract

ABSTRACTA series of tetrahedral tetramers of 2,5-diphenyl substituted 1,3,4-oxadiazole compounds were synthesized and characterized for electron-transporting layer (ETL) in organic light-emitting diode (OLED). The multiple-branch design of the oxadiazole tetramers intends to increase the melting temperature and to generate glass phase of the low molar mass derivative such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD). We observed temperatures of the glass phase transition for the oxadiazole tetramer with appropriate peripheral substituents, indicative of amorphous characteristics of the molecule in spite of highly symmetrical molecular framework. The luminescence-current-voltage characteristics of multilayer OLED devices containing the oxadiazole tetramer or PBD as ETL were examined to evaluate the efficiency of our multiple-branch molecular design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.