Abstract

The highly porous luminescent metal-organic frameworks (MOFs) can act as fluorescent probes for the detection of nitro compounds and can also serve as containers and energy transfer platforms to construct the host-guest systems. Herein, two new three-dimensional MOFs with high porosity were prepared successfully by the electron-rich tetrakis(4-pyridylphenyl)ethylene (tppe) as ligands. Compound 1 shows the high sensitivity and selectivity toward nitro-antibiotics in an aqueous media, particularly showing the best detection efficiency for furazolidone (FZD) among the reported luminescent sensors. The highly efficient fluorescence quenching toward FZD may be attributed to the electron and energy transfer. Compound 2 has naphthalene-2,7-dicarboxylic acid (2,7-npd) and tppe as dual linkers, and the energy transfer between 2,7-npd and tppe leads to the emission band in a large scale. It is worth noting that the single-phased white-light materials can be obtained by the in situ encapsulation of different concentration of sulforhodamine 101 (SR101) into compound 2 matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call