Abstract

Viability, cell cycle distribution, and expressions of eukaryotic translation initiation factor-2α (eIF-2α), cyclin D1, poly(ADP-ribose) polymerase 1 (PARP-1), and apoptosis-inducing factor (AIF) of RT-2 glioma cells were assayed under treatment of tetrandrine and caffeine for 48 h. The results showed that cell viability decreased significantly under treatment with tetrandrine (5 μM) alone or under combined treatment with tetrandrine (5 μM) and caffeine (0.5 or 1 mM). The ratio of RT-2 cells at sub G1 and G0/G1 stages increased significantly during combined treatment of tetrandrine (5 μM) and caffeine (0.5, 1 mM). The ratio of phospharylated eIF-2α to dephospharylated eIF-2α increased, whereas cyclin D1 decreased significantly under combined treatment of tetrandrine (5 μM) and caffeine (1 mM). The cleaved PARP-1 to PARP-1 ratio was elevated significantly under treatment of 5 μM tetrandrine alone, and combined treatment of 5 μM tetrandrine and caffeine (0.5, 1 mM). The expression levels of AIF increased significantly under treatment of 5 μM tetrandrine alone or 1 mM caffeine alone, and combined treatment of 5 μM tetrandrine and caffeine (0.5, 1 mM). In conclusion, tetrandrine and caffeine could induce glioma cell death possibly via increasing eIF-2α phospharylation, decreasing cyclin-D1 expression, and increasing caspase-dependent and -independent apoptosis pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.