Abstract
Hepatic ischemia/reperfusion injury (IRI) is an adverse effect for liver transplantation which is characterized by immune response mediated inflammation. Recent studies report that neutrophil extracellular traps (NETs) are implicated in hepatic IRI. The aim of this study was to explore the mechanism of action of tetramethylpyrazine (TMP), the main chemical composition of Ligusticum chuanxiong in treatment of ischemic related diseases. Data showed that hepatic IRI increases the leak of alanine aminotransferase (ALT) and aspartate transaminase (AST), and stimulates formation of NETs. Extracellular DNA/NETs assay, hematoxylin-eosin (HE) staining, immunofluorescence assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and Western blot assay, showed that TMP significantly reduces formation of NETs and alleviates hepatic IRI. Moreover, TMP and Diphenyleneiodonium (DPI) suppressed ROS production in neutrophils. In addition, analysis showed that activation of NADPH oxidase plays a role in formation of NETs triggered by hepatic IRI. Notably, TMP inhibited formation of NETs though inhibition of NADPH oxidase. Additionally, Combination treatment using TMP and DPI was more effective compared with monotherapy of either of the two drugs. These findings show that combination therapy using TMP and DPI is a promising method for treatment hepatic IRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.