Abstract

The formation of foam cells is a characteristic of the occurrence and development of atherosclerosis. ATP-binding cassette subfamily A1 and G1 (ABCA1 and ABCG1) and scavenger receptor B1 (SR-B1) play critical roles in promoting intracellular cholesterol efflux to high-density lipoprotein (HDL) or apolipoprotein A1 (apoA1). We attempted to test the effect of the tetramethylpyrazine-paeoniflorin pair (TP) on cholesterol outflow in foam cells derived from macrophages. In this study, RAW264.7 macrophages were treated with 80 mg/L oxidized low-density lipoprotein (ox-LDL) for 24 h to obtain foam cells. Then they were intervened with TP (tetramethylpyrazine 40 ug/ml plus paeoniflorin 80 ug/ml) for additional 24 h. The distribution of cholesterol in foam cells was evaluated by oil red O staining. The contents of total cholesterol (TC) and free cholesterol (FC) were assessed with commercial kits. Fluorescent imaging was observed with a fluorescent inverted microscope. The capacity of cholesterol efflux was measured with a fluorescent plate reader, and the transcript and protein levels of ABCA1, ABCG1, and SR-B1 were detected by Western blot and quantitative polymerase chain reactions (Q-PCRs). Cytokines in the medium were detected by ELISA and adjusted by total cellular proteins. The results showed that TP decreased ox-LDL-induced cholesterol deposition and foam cell formation by promoting cholesterol efflux to apoA1, which was related to the upregulation of ABCA1 and ABCG1. Moreover, TP decreased the secretion of ox-LDL-induced tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and monocyte chemotactic protein-1 (MCP-1), an important profoam cell cytokine in atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.