Abstract
Abstract The protonolysis reaction of [Ln(AlMe4)3] with H(Cp′) (Cp′ = C5Me4H) gives access to half-sandwich complexes [(Cp′)Ln(AlMe4)2]. X-ray structure analyses of the samarium, neodymium, and lanthanum derivatives reveal a distinct [AlMe4] coordination (one η2, one bent η2) for the two smaller rare-earth metals. The lanthanum complex displays an unprecedented dimeric structure with two μ2-η1:η2 coordinating [AlMe4] ligands in the solid state. Treatment of complexes [(Cp′)Ln(AlMe4)2] with perfluorinated organoborates and -boranes produces discrete contact ion-pairs, which are characterized by 1H, 13C, 27Al, 19F, and 11B NMR spectroscopy and act as efficient initiators for the fabrication of trans-1,4 polyisoprene. The polymerization performance is hereby affected by the rare-earth metal cation size, the type of boron cocatalyst, and the polymerization temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.