Abstract
Congenital malformations of the heart and circulatory system are the most common type of human birth defect. Recent studies have implicated the Notch signaling pathway in human cardiac development by demonstrating abnormalities of the JAG1 gene as the basis for Alagille syndrome and some cases of isolated tetralogy of Fallot or pulmonic stenosis [1–4]. How the Notch pathway acts in cardiac development remains unknown, but the Hey family of basic helix-loop-helix (bHLH) transcription factors are candidates for mediating Notch signaling in the developing cardiovascular system [5–15]. Here, we use gene targeting to determine the developmental functions of mouse Hey2, a Hey family member that is expressed during the embryonic development of the heart, arteries, and other organs. Homozygotes for the Hey2 mutant allele display a spectrum of cardiac malformations including ventricular septal defects, tetralogy of Fallot, and tricuspid atresia, defects that resemble those associated with mutations of human JAG1. These results establish Hey2 as an important regulator of cardiac morphogenesis and suggest a role for Hey2 in mediating or modulating Notch signaling in the developing heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.