Abstract

The aim of this study was to confirm the protective effect of tetrahydropalmatine (THP) against irradiation-induced rat pulmonary endothelial cell apoptosis and to explore the underlying mechanism, with a focus on the calcium-sensing receptor (CaSR)/phospholipase C-γ1 (PLC-γ1) pathway. We established a model of irradiation-induced primary rat pulmonary endothelial cell injury. Cell apoptosis and mitochondrial membrane potential (Δψm) were measured by flow cytometry. The expression of CaSR, cytochrome c, PLC-γ1, reactive oxygen species (ROS) and [Ca2+]i was also determined. Caspase-3 and caspase-9 activities were measured using commercial kits. Inositol triphosphate (IP3) and the production of inflammatory cytokines were detected by enzyme-linked immunosorbent assay. The results showed that THP significantly inhibited irradiation-induced cell apoptosis and intracellular accumulation of ROS. Pretreatment with THP significantly decreased the expression of CaSR, inhibited the CaSR/PLC-γ1 pathway and subsequent [Ca2+]i overload stimulated by irradiation. THP, NPS2390 (inhibitor of CaSR), U73122 (inhibitor of PLC-γ1) and 2-APB (inhibitor of IP3) further decreased cell apoptosis, along with down-regulation of cytochrome c, caspase-3 and caspase-9 activation, disruption of Δψm and the production of inflammatory cytokines. These findings suggest that THP protects primary rat pulmonary endothelial cells against irradiation-induced apoptosis by inhibiting oxidative stress and the CaSR/PLC-γ1 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.