Abstract

Methanogenic archaea are generally thought to use tetrahydromethanopterin or tetrahydrosarcinapterin (H4SPT) rather than tetrahydrofolate (H4F) as a pterin C1 carrier. However, the genome sequence of Methanosarcina species recently revealed a cluster of genes, purN, folD, glyA and metF, that are predicted to encode for H4F-specific enzymes. We show here for folD and glyA from M. barkeri that this prediction is correct: FolD (bifunctional N5,N10-methylene-H4F dehydrogenase/N5,N10-methenyl-H4F cyclohydrolase) and GlyA (serine:H4F hydroxymethyltransferase) were heterologously overproduced in Escherichia coli, purified and found to be specific for methylene-H4F and H4F, respectively (apparent Km below 5 microM). Western blot analyses and enzyme activity measurements revealed that both enzymes were synthesized in M. barkeri. The results thus indicate that M. barkeri should contain H4F, which was supported by the finding that growth of M. barkeri was dependent on folic acid and that the vitamin could be substituted by p-aminobenzoic acid, a biosynthetic precursor of H4F. From the p-aminobenzoic acid requirement, an intracellular H4F concentration of approximately 5 M was estimated. Evidence is presented that the p-aminobenzoic acid taken up by the growing cells was not required for the biosynthesis of H4SPT, which was found to be present in the cells at a concentration above 3 mM. The presence of both H4SPT and H4F in M. barkeri is in agreement with earlier isotope labeling studies indicating that there are two separate C1 pools in these methanogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call