Abstract

Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegenerative conditions such as Parkinson's and Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call