Abstract
AbstractThe rigid planar architecture of multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecules employing boron/nitrogen (B/N) frameworks typically results in severe aggregation‐caused quenching (ACQ) and spectral broadening. Herein, a steric modification strategy is proposed by incorporating a tetrahedral architecture of triphenylgermanium (TPhGe) into the para‐position of B/N/N, B/N/O, and B/N/S frameworks for the first time, formed three MR‐TADF emitters, BNNGe, BNOGe, and BNSGe, with narrowband emissions ranging from bluish‐green to pure blue. Consequently, these emitters exhibit high photoluminescence quantum yields of > 90% in doped films. Organic light‐emitting diodes (OLEDs) based on BNNGe, BNOGe, and BNSGe demonstrate impressive maximum external quantum efficiencies (EQEmaxs) of 30.1% to 15.5%, and 20.7%, respectively. The unique tetrahedral TPhGe moiety, with its bulky size conformation, effectively separates adjacent MR‐TADF molecules, resulting in efficient luminescence across a broad range of doping concentrations (5–30 wt%) in doped films, thereby successfully suppressing the ACQ in devices. Furthermore, OLEDs containing BNSGe display low‐efficiency roll‐offs because of higher spin‐orbital coupling and reverse intersystem crossing rates of the emitter, attributed to the heavy atom effect. Notably, the device with 5 wt% BNOGe exhibits a pure blue emission peaking at 461 nm, with a narrow full‐width at half‐maximum of 32 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.