Abstract

MicroRNA132 (miR132) negatively regulates the differentiation of mouse embryonic stem cells (ESCs) into dopaminergic (DAergic) neurons; in contrast, antisense oligonucleotide against miR132 (miR132-ASO) effectively blocks the activity of endogenous miR132 and thereafter promotes the differentiation of DAergic neurons. However, it is difficult for miR132-ASO to enter cells without a suitable delivery system. Tetrahedral DNA nanostructures (TDNs), as a new type of DNA-based nanocarrier, have great potential in biomedical applications and even have been reported to promote stem cell differentiation. In this study, we developed functional multivalent DNA nanostructures by appending miR132-ASO motifs to three-dimensional TDNs (miR132-ASO-TDNs). Our data clearly revealed that miR132-ASO-TDNs exposure can promote the differentiation of ESCs into DAergic neurons as well as elevate DA release from differentiated DAergic neurons. MiR132-ASO-TDNs could serve as a novel biofunctional nanomaterial to improve the efficiency of DAergic neurons differentiation. Our findings may also provide a new approach for stem cell therapy against neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call