Abstract

microRNA (miRNA) is a kind of small non-coding RNA that has been regarded as potential biomarkers for cancers. Sensitive and specific detection of miRNA at low expression levels is highly desirable but remains challenging, especially for amplification-free and portable point of care (POC) diagnostics. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a has been recently discovered and used in the field of RNA detection. Nonetheless, most CRISPR/Cas13a-based methods were burdened with expensive equipment, time-consuming procedures, and complicated operations which were not suitable for POC analysis. In this work, we constructed a three-dimensional tetrahedral DNA framework based CRISPR-electrochemical biosensor (CRISPR-E). By combining tetrahedral DNA framework, CRISPR, and electrochemical biosensor, the process of activation, cleavage of Cas13a, and signal readout were all finished on the chip, and a simple, amplification-free and sensitive detection of miRNA-19b was realized. Under the optimal experimental conditions, a linear range from 10 pM to 104 pM with detection limit of 10 pM for miRNA-19b in buffer solution was achieved. Selectivity analysis indicated that our CRISPR-E had good distinguishing ability between miRNA-19b and miRNA-197. The results of miRNA-19b detection in mimic serum samples were consistent with that of the buffer solution. This all-on-chip strategy of our CRISPR-E is very suitable for POC testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call