Abstract

In the statistical theory of the ordering of carbon atoms in the z sublattice of martensite, the most important role is played by the parameter of the strain interaction of carbon atoms λ0, which determines the critical temperature of the bcc–bct transition. The values of this parameter (6–11 eV/atom) obtained in recent years by the methods of computer simulation differ significantly from the value λ0 = 2.73 eV/atom obtained by A. G. Khachaturyan. In this article, we calculated the value of λ0 by two methods based on the molecular-dynamics simulation of the ordering of carbon atoms in the lattice of martensite at temperatures of 500, 750, 900, and 1000 K in a wide range of carbon concentrations, which includes ccrit. No tails of ordering below ccrit have been revealed. It has been shown analytically that there is an inaccuracy in the Khachaturyan theory of ordering for the crystal in an elastic environment. After eliminating this inaccuracy, no tails of the order parameter appear; the tetragonality changes jumpwise from η = 0 to ηcrit = 0.75 at ccrit = 2.9kT/λ0 instead of ηcrit = 0.5 and ccrit= 2.77kT/λ0 for an isolated crystal. Upon the simulation, clustering of carbon atoms was revealed in the form of platelike pileups along {102} planes separated by flat regions where no carbon atoms were present. The influence of short-range order in the arrangement of neighboring carbon atoms on the thermodynamics of ordering is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.