Abstract

AbstractAbundance and relatively low cost of Ce provide a great incentive for its use in rare‐earth permanent magnets. It has been recently reported that the tetragonal Ce(Fe,Co,Ti)12 compounds may exhibit application‐worthy intrinsic magnetic properties. In this work the effect of the α‐Fe phase formation due to the evaporation of Sm during alloy fabrication has been studied, as a previous step in the attempt to convert the intrinsic magnetic properties into functional properties of a permanent magnet. Ce0.5Sm0.5Fe9Co2Ti alloys based on the ThMn12‐type crystal structure have been synthesized via melt‐spinning with different Sm content. Coercive fields between 2.8 and 1.4 kOe have been found for α‐Fe phase contents between 8 and 46% in volume, showing the influence of the α‐Fe phase on the coercivity and exchange coupling between the hard and soft phase. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.