Abstract

The development of highly efficient bioorthogonal reactions is of paramount importance for the research fields of biomaterials and chemical biology. We found that the o,o'-difluorinated aromatic azide was able to react with triphenylphosphine to produce water-stable phosphanimine. To further improve the efficiency of this kind of nonhydrolysis Staudinger reaction, a tetrafluorinated aromatic azide was employed to develop a faster nonhydrolysis Staudinger reaction with a rate of up to 51 m-1 s-1 , as revealed by high-performance liquid chromatography (HPLC) analysis and fluorescence kinetics. As a proof-of-concept study, the highly efficient Staudinger reaction was successfully used for chemoselective fluorescence labeling of proteins and nucleic acids (DNA and RNA) as well as for protein polyethyleneglycol (PEG)ylation. We believe that this bioorthogonal reaction can provide a broadly useful tool for various bioconjugations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call