Abstract

High-energy ball milling was used to mediate the formation of nanocomposites containing tetracycline and magnetic nanoparticles. Tetracycline-HCl was ball milled for 1, 3, 5, 15, and 30h under argon or air atmosphere with preformed Mg0.5Zn0.5Fe2O4 nanoferrites prepared by glycolthermal method. The structural, thermal, and magnetic properties of these novel materials and the effect of milling atmosphere on composition, crystallinity and cation distribution were then characterized by ICP-OES, DSC/TGA, XRPD, ATR-IR, UV–Vis and Mössbauer spectroscopy. Tetracycline underwent rapid and consecutive metal coordination events in the milling process to yield complexes characterized by bathochromic shifts in its electronic spectra and suppression of electronic absorbance at 365nm. Changes in stretching vibrations due to the A-ring carbonyl (1616cm−1), amide II nitrogen (1602cm−1), and CO bond (1039cm−1) indicate Mg-type interactions imposed on the metals. Exothermic oxidation of the drug at 235°C disappeared after 5h milling with the nanoferrites, and the composites formed remained thermostable up to 500°C. Tetracycline-nanoferrites (Tet-NF) are magnetic-ordered materials with a well-defined spinel-type structure. Analysis of the Mössbauer data suggests that the milling time and atmosphere have significant influence on cation distributions in Tet-NF composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.