Abstract

Tetracycline resistance in Campylobacter is encoded by the tet(O) gene and is usually associated with conjugative plasmids. Little was known about tetracycline resistance in Australian Campylobacter species, therefore we investigated this resistance in 41 Campylobacter jejuni and five Campylobacter coli strains from humans and healthy chickens. Tetracycline MICs were determined for each isolate using an agar dilution method. The distribution and localization of tet(O) on plasmid and chromosomal DNA was determined by Southern-blot experiments. The ability to transfer resistance to recipient strains was examined through conjugation studies. Identity of transconjugants was confirmed by PCR and flaA-restriction fragment length polymorphism analysis. High-level tetracycline resistance was observed, ranging from 32 to >256 mg/L. Plasmids were detected in 74% of isolates with plasmids between 30 and 40 kb in size most frequently isolated. tet(O) was present in all tetracycline-resistant isolates. In the majority of strains under study the tet(O) gene was chromosomally encoded. Tetracycline resistance of six C. jejuni strains in which tet(O) was plasmid mediated was transferred by conjugation to a C. jejuni recipient strain. Transfer did not occur between tetracycline-resistant C. jejuni strains and a C. coli recipient. No difference in MICs, plasmid carriage and tet(O) localization was detected between human and chicken isolates. These data indicate that the tet(O) gene, previously reported in Campylobacter strains throughout the world, is present in Australian Campylobacter. This study will lead to a greater understanding of antibiotic resistance distribution in Campylobacter spp. in Australia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.