Abstract
In this study, we used a liquid-phase polymer-based retention technique assisted by polyelectrolyte copolymers containing quaternary ammonium and sulfonate groups that are capable of removing the antibiotic tetracycline (TC) through electrostatic interactions. The polymers were synthesized using zwitterionic, anionic, and cationic monomers with the aim of obtaining copolymers with different charge balances at the ratios of 1:1, 2:1, and 1:2 (negative: positive). The parameters investigated for each copolymer included the pH, ionic strength, concentration of polymer, maximum retention capacity, and sorption–elution process at pH 11.0 and 3.0. The copolymers with a charge ratio of 1:2 achieved the highest retention (80.0%) at alkaline pH, while the copolymers with charge ratios of 2:1 and 1:1 exhibited the maximum retention (72.0%) at acidic pH. Based on these results, the pH and charge of the polyelectrolyte copolymers play important roles in the TC removal processes. Additionally, the maximum retention capacity (MRC) recorded was 731.2, 176.8, and 214.8 mg TC/g of copolymer in the first charge for the three copolymer polyelectrolytes, and the second charge of the MRC process did not improve compared with the first load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.