Abstract

Nitrification and denitrification are the most important nitrogen transformation processes in the environment. Recently, due to widespread use, antibiotics have been reported to lead to environmental risks. Tetracycline (TC) is one of the most extensively used antibiotics in many areas. However, its reported effects on nitrogen transformations were conflicting in previous studies. In this study, the effects of TC on nitrogen transformations in sediment were investigated by analyzing TC transport and bacterial activity. It was found that the adsorption of TC onto the sediment was favorable and spontaneous, with adsorption capacity 54.3 mg/kg. The adsorption kinetics of TC onto the sediment and the isotherm fitted the Elvoich and Freundlich models, respectively, indicating that the adsorption was a chemisorption process, including electrostatic interactions and chemical bonding between TC and the sediment. TC showed no effect on nitrification in the sediment, but significantly inhibited the reduction of nitrate and nitrite during denitrification, consistent with observations made for the model denitrifier Paracoccus denitrificans under TC stress. Mechanistic study indicated that TC at 130 μg/g-cell inhibited 50.7% of P. denitrificans growth and 61.6% of cell viability. Meanwhile, the catalytic activities of the key denitrifying enzymes, nitrate reductase (NAR) and nitrite reductase (NIR), decreased to 29.1% and 68.0% of the control levels when the TC concentration was 130 μg/g-cell, suggesting that NAR was more sensitive to the TC than NIR, which contributed to a delay in nitrite accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call