Abstract

The tetracycline (TET) promoter has been used in several systems as an inducible regulator of gene expression. In control analyses, the standard Candida albicans laboratory strain SC5314 was found to have altered susceptibility to a variety of antifungal drugs in the presence of relatively high concentrations (50-200 microg ml(-1)) of TET. Altered susceptibility was most notable with exposure to amphotericin B (AMB), with a 32-fold increase in susceptibility, and terbinafine (TRB), with a 32-fold decrease in susceptibility. The TET/AMB synergy was observed in several clinical isolates of C. albicans and in the distantly related species Aspergillus fumigatus and Cryptococcus neoformans. The TET/AMB synergy is not related to efflux pump activity, as determined by FACS analyses and by analysis of a strain containing efflux pump deletions. Gene expression analyses by luciferase and by quantitative real-time reverse transcriptase PCR failed to identify significant alterations in expression of any genes associated with resistance. C. albicans grown with TET for 48 h does show a reduction in total cellular ergosterol. Analysis of growth curves suggests that the TET effect is associated with lack of a diauxic shift, which is related to a loss of mitochondrial function. MitoTracker fluorescent dye was used to demonstrate that TET has a direct effect on mitochondrial function. These results demonstrate the need for careful analysis of TET effects when using a TET-inducible promoter, especially in studies that involve antifungal drugs. This study defines some limits to the use of the TET-inducible promoter, and identifies effects on cells that are the result of TET exposure alone, not the result of expression of a targeted gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call