Abstract

Excitation of photoactive electron donor-acceptor (EDA) complexes is an effective way to generate radicals. Applications in a catalytic regime typically use catalytic donors. Herein, we report that readily available electron-poor tetrachlorophthalimides can act as effective organocatalytic acceptors to trigger the formation of EDA complexes with a variety of radical precursors not amenable to previous catalytic methods. Excitation with visible light generates carbon radicals under mild conditions. The versatility of this EDA complex catalytic platform allowed us to develop mechanistically distinct radical reactions, including in combination with a cobalt-based catalytic system. Quantum yield measurements established that a closed catalytic cycle is operational, which hints at the ability of tetrachlorophthalimides to readily turn over and govern each catalytic cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.