Abstract

A stepwise surface functionalization procedure, based on hybrid covalent and non-covalent approach is herein proposed to anchor tetra-anionic meso-tetrakis(4-sulfonatophenyl)porphyrin on ZnO nanorods. Carboxyalkylphosphonic acids have been proven effective to form stable self-assembled monolayers through the surface grafting of –PO3H2 headgroups. The exposed carboxylic functionalities are suitable for the successful grafting of cationic poly-l-lysine that drives, in water, the non-covalent anchoring of the anionic porphyrin. A stepwise surface characterization, provided by X-ray photoelectron spectroscopy, elucidates the multilayers deposition and surface composition after each process step, thus, giving interesting insights on the chemical speciation of the exposed functionalities. UV–vis spectroscopy confirms the role of ZnO morphology to increase the porphyrin loading onto the investigated surfaces. The proposed approach is effective to achieve deposition of anionic porphyrins on ZnO nanostructures and combines the robustness of covalent functionalization with the versatility and full reversibility of the non-covalent strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.