Abstract

Architectural DNA binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered Particle Motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput. TPM is therefore well suited for characterization of the effects of protein-DNA stoichiometry and changes in physicochemical conditions (pH, osmolarity, and temperature). Here, we describe in detail how to perform Tethered Particle Motion experiments on complexes between DNA and architectural proteins to determine their structural and biochemical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call