Abstract
This paper presents the formation of a novel biomimetic interface consisting of an electrolessly deposited gold film overlaid with a tethered bilayer lipid membrane (tBLM). Self-assembly of colloidal gold particles was used to create an electrolessly deposited gold film on a glass slide. The properties of the film were characterized using field-effect scanning electron microscopy, energy dispersive spectroscopy, and atomic force microscopy. Bilayer lipid membranes were then tethered to the gold film by first depositing an inner molecular leaflet using a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate], 1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine (DPGP), and cystamine in ethanol onto a freshly prepared electrolessly deposited gold surface. The outer leaflet was then formed by the fusion of liposomes made from DPGP or 1,2-dioleoyl-sn-glycero-3-phosphocholine on the inner leaflet. To provide functionality, two membrane biomolecules were also incorporated into the tBLMs: the ionophore valinomycin and a segment of neuropathy target esterase containing the esterase domain. Electrochemical impedance spectroscopy, UV/visible spectroscopy, and fluorescence recovery after pattern photobleaching were used to characterize the resulting biomimetic interfaces and confirm the biomolecule activity of the membrane. Microcontact printing was used to form arrays of electrolessly deposited gold patterns on glass slides. Subsequent deposition of lipids yielded arrays of tBLMs. This approach can be extended to form functional biomimetic interfaces on a wide range of inexpensive materials, including plastics. Potential applications include high-throughput screening of drugs and chemicals that interact with cell membranes and for probing, and possibly controlling, interactions between living cells and synthetic membranes. In addition, the gold electrode provides the possibility of electrochemical applications, including biocatalysis, bio-fuel cells, and biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.